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1. INTRODUCTION                                                               

If 𝑎, 𝑏, and 𝑐 are positive integers, then (𝑎, 𝑏, 𝑐) is called a Pythagorean triple [2] if 𝑎2 +  𝑏2 = 𝑐2.  The integers within a 

Pythagorean triple are usually arranged in increasing order.  Some well-known Pythagorean triples are (3, 4, 5), 

(8, 15, 17), and (10, 24, 26).  (𝑎, 𝑏, 𝑐) is called primitive if gcf(𝑎, 𝑏, 𝑐) = 1.  Note that (3, 4, 5) and (8, 15, 17) are 

primitive, while (10, 24, 26) is not.  We can generalize the concept of a Pythagorean triple as follows.  If 𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 

𝑐, 𝑛, and 𝑘 are positive integers, and 𝑘 ≥ 3, then we shall call  (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) a generalized Pythagorean triple, or an 

𝑛th degree 𝑘-tuple, if 𝑎1
𝑛 +  𝑎2

𝑛 + .  .  . +  𝑎𝑘−1
𝑛 =  𝑐𝑛.  We shall arrange the integers within an 𝑛th degree 𝑘-tuple in 

non-decreasing order and shall say that (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) is primitive if gcf(𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) = 1.  For example, 

(3, 4, 5, 6) is a primitive 3rd degree 4-tuple because 33 + 43  +  53 =  63 and gcf(3, 4, 5, 6) = 1.  Recall that an infinite 

geometric series [1] of the form 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ converges to 
1

1−𝑥
 provided that |𝑥| < 1.  Fermat’s Last Theorem 

[2], which was proven by English mathematician Andrew Wiles in 1995, states that there exist positive integers 𝑎, 𝑏, 𝑐, and 

𝑛 that satisfy the equation 𝑎𝑛 +  𝑏𝑛 = 𝑐𝑛 if and only if 𝑛 = 1 or 2.  In this article, we show how to construct an infinite 

family of generalized Pythagorean triples from a given 𝑛th degree 𝑘-tuple. Then, we discuss some consequences of 

Fermat's Last Theorem that are related to this construction. 

2.   CONSTRUCTING AN INFINITE FAMILY OF GENERALIZED PYTHAGOREAN TRIPLES 

Proposition 1:  Given an 𝑛th degree 𝑘-tuple (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) with 𝑛 ≥ 1 and 𝑘 ≥ 3, we can construct an 𝑛th degree 

(𝑘 + 𝑖(𝑘 − 2))-tuple for each 𝑖 = 1, 2,.  .  . . 

 

Proof:  If (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) is an 𝑛th degree 𝑘-tuple with 𝑛 ≥ 1 and 𝑘 ≥ 3, then 𝑎1
𝑛 + 𝑎2

𝑛 +  ⋯ +  𝑎𝑘−1
𝑛 =  𝑐𝑛.  Now, 

select any one of the integers 𝑎1, 𝑎2,.  .  ., or  𝑎𝑘−1 (say, 𝑎1) and form the convergent infinite geometric series whose first 

term is 1 and whose common ratio is (
𝑎1

𝑐
)

𝑛

.  Then, we have 1 + (
𝑎1

𝑐
)

𝑛

+  (
𝑎1

𝑐
)

2𝑛

+  (
𝑎1

𝑐
)

3𝑛

+  ⋯ =  
1

1 − (
𝑎1
𝑐

)
𝑛  =  

1

𝑐𝑛

𝑐𝑛 − 
𝑎1
𝑐𝑛

𝑛  =

 
1

𝑎2
𝑛 + ⋯ + 𝑎𝑘−1

𝑛

𝑐𝑛

 =  
𝑐𝑛

𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛 .  That is, 
𝑐𝑛

𝑎2
𝑛+ ⋯ +  𝑎𝑘−1

𝑛  =  1 +  (
𝑎1

𝑐
)

𝑛

+  (
𝑎1

𝑐
)

2𝑛

[1 +  (
𝑎1

𝑐
)

𝑛

+ (
𝑎1

𝑐
)

2𝑛

+ ⋯ ]  =  1 +

 (
𝑎1

𝑐
)

𝑛

+ (
𝑎1

𝑐
)

2𝑛

∙
𝑐𝑛

𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛  =  1 +  (
𝑎1

𝑐
)

𝑛

+ 
𝑎1

2𝑛

𝑐𝑛(𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛)
 .  Multiplying each side of the equation 
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𝑐𝑛

𝑎2
𝑛+ ⋯ +  𝑎𝑘−1

𝑛 =  1 +  (
𝑎1

𝑐
)

𝑛

+ 
𝑎1

2𝑛

𝑐𝑛(𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛)
 by 𝑐𝑛(𝑎2

𝑛 + ⋯ + 𝑎𝑘−1
𝑛) gives us 𝑐2𝑛 = 𝑐𝑛(𝑎2

𝑛 +  ⋯ + 𝑎𝑘−1
𝑛)  +

 𝑎1
𝑛(𝑎2

𝑛 + ⋯ +  𝑎𝑘−1
𝑛) + 𝑎1

2𝑛.  Therefore, 𝑐2𝑛 = (𝑎2𝑐)𝑛 +  ⋯ + (𝑎𝑘−1𝑐)𝑛 + (𝑎1𝑎2)𝑛 +  ⋯ + (𝑎1𝑎𝑘−1)𝑛 + 𝑎1
2𝑛, or 

equivalently, (𝑐2)𝑛 = (𝑎2𝑐)𝑛 +  ⋯ + (𝑎𝑘−1𝑐)𝑛 + (𝑎1𝑎2)𝑛 + ⋯ + (𝑎1𝑎𝑘−1)𝑛 + (𝑎1
2)𝑛.  Hence, 

(𝑎1
2, 𝑎1𝑎2, .  .  . , 𝑎1𝑎𝑘−1, 𝑎2𝑐, .  .  . , 𝑎𝑘−1𝑐, 𝑐2) is an 𝑛th degree (𝑘 + (𝑘 − 2))-tuple .  Also,  

𝑐𝑛

𝑎2
𝑛+ ⋯ +  𝑎𝑘−1

𝑛  =  1 +  (
𝑎1

𝑐
)

𝑛

+

 (
𝑎1

𝑐
)

2𝑛

+  (
𝑎1

𝑐
)

3𝑛

[1 +  (
𝑎1

𝑐
)

𝑛

+  ⋯ ]  = 1 +  (
𝑎1

𝑐
)

𝑛

+  (
𝑎1

𝑐
)

2𝑛

+  (
𝑎1

𝑐
)

3𝑛

∙
𝑐𝑛

𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛  =  1 +  (
𝑎1

𝑐
)

𝑛

+ (
𝑎1

𝑐
)

2𝑛

+

 
𝑎1

3𝑛

𝑐2𝑛(𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛)
 .  Multiplying each side of the equation 

𝑐𝑛

𝑎2
𝑛+ ⋯ +  𝑎𝑘−1

𝑛 =  1 +  (
𝑎1

𝑐
)

𝑛

+ (
𝑎1

𝑐
)

2𝑛

+ 
𝑎1

3𝑛

𝑐2𝑛(𝑎2
𝑛+ ⋯ + 𝑎𝑘−1

𝑛)
 by 

𝑐2𝑛(𝑎2
𝑛 + ⋯ +  𝑎𝑘−1

𝑛), we obtain 𝑐3𝑛 =  𝑐2𝑛(𝑎2
𝑛 +  ⋯ + 𝑎𝑘−1

𝑛)  + 𝑎1
𝑛𝑐𝑛(𝑎2

𝑛 +  ⋯ + 𝑎𝑘−1
𝑛) +  𝑎1

2𝑛(𝑎2
𝑛 +  ⋯ +

 𝑎𝑘−1
𝑛)  +  𝑎1

3𝑛, so 𝑐3𝑛 = (𝑎2𝑐2)𝑛 +  ⋯ + (𝑎𝑘−1𝑐2)𝑛 +  (𝑎1𝑎2𝑐)𝑛 + ⋯ + (𝑎1𝑎𝑘−1𝑐)𝑛 + (𝑎1
2𝑎2)𝑛 + ⋯ +

(𝑎1
2𝑎𝑘−1)𝑛 +  𝑎1

3𝑛, or equivalently, (𝑐3)𝑛 = (𝑎2𝑐2)𝑛 +  ⋯ + (𝑎𝑘−1𝑐2)𝑛 +  (𝑎1𝑎2𝑐)𝑛 + ⋯ + (𝑎1𝑎𝑘−1𝑐)𝑛 + (𝑎1
2𝑎2)𝑛 +

⋯ + (𝑎1
2𝑎𝑘−1)𝑛 +  (𝑎1

3)𝑛.  This means that (𝑎1
3, 𝑎1

2𝑎2, .  .  . , 𝑎1
2𝑎𝑘−1, 𝑎1𝑎2𝑐, .  .  . , 𝑎1𝑎𝑘−1𝑐, 𝑎2𝑐2, .  .  . , 𝑎𝑘−1𝑐2, 𝑐3) is an 

𝑛th degree (𝑘 + 2(𝑘 − 2))-tuple.  Observe that the given 𝑛th degree 𝑘-tuple (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) may or may not be 

primitive.  If (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) is primitive, then the 𝑛th degree (𝑘 + (𝑘 − 2))-tuple 

(𝑎1
2, 𝑎1𝑎2, .  .  . , 𝑎1𝑎𝑘−1, 𝑎2𝑐, .  .  . , 𝑎𝑘−1𝑐, 𝑐2) is primitive and the 𝑛th degree (𝑘 + 2(𝑘 − 2))-tuple 

(𝑎1
3, 𝑎1

2𝑎2, .  .  . , 𝑎1
2𝑎𝑘−1, 𝑎1𝑎2𝑐, .  .  . , 𝑎1𝑎𝑘−1𝑐, 𝑎2𝑐2, .  .  . , 𝑎𝑘−1𝑐2, 𝑐3) is primitive if and only if gcf(𝑎1, 𝑐) = 1.  Also, the 

integers in (𝑎1
2, 𝑎1𝑎2, .  .  . , 𝑎1𝑎𝑘−1, 𝑎2𝑐, .  .  . , 𝑎𝑘−1𝑐, 𝑐2) are all different, and the integers in 

(𝑎1
3, 𝑎1

2𝑎2, .  .  . , 𝑎1
2𝑎𝑘−1, 𝑎1𝑎2𝑐, .  .  . , 𝑎1𝑎𝑘−1𝑐, 𝑎2𝑐2, .  .  . , 𝑎𝑘−1𝑐2, 𝑐3) are all different, if and only if the integers in 

(𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) are all different.  By iterating this procedure, we can construct an 𝑛th degree (𝑘 + 𝑖(𝑘 − 2))-tuple for 

each 𝑖 = 1, 2,.  .  . .  

 

The following numerical example illustrates how to construct a 3rd degree 6-tuple and a 3rd degree 8-tuple from a given 

3rd degree 4-tuple. 

 

Example 1:  Let 𝑎1 = 3, 𝑎2 = 4, 𝑎3 = 5, and 𝑐 = 6.  Then, (3, 4, 5, 6) is a 3rd degree 4-tuple because 33 +  43  +  53 =

 63.  Now, select any one of the integers 3, 4, or 5 (say, 3) and form the convergent infinite geometric series whose first term 

is 1 and whose common ratio is (
3

6
)

3

.  Then, 1 +  (
3

6
)

3

+ (
3

6
)

6

+ (
3

6
)

9

 +  ⋯  =  
1

1 − (
3

6
)

3  =  
1

63

63 − 
33

63

 =  
1

43+53

63

 =  
63

43+53 .  

That is,  
63

43+53  = 1 +  (
3

6
)

3

+  (
3

6
)

6

[1 + (
3

6
)

3

+  (
3

6
)

6

+ ⋯ ] = 1 + (
3

6
)

3

+  (
3

6
)

6

∙
63

43+53   = 1 +  (
3

6
)

3

+ 
36

63(43+53)
 .  

Multiplying each side of the equation 
63

43+53 = 1 + (
3

6
)

3

+  
36

63(43+53)
 by 63(43 + 53) gives us 66  =  63(43 + 53)  +

 33(43 + 53) +  36, from which it follows that 66 = 243 + 303 + 123 + 153 + 36, or equivalently, 363 = 243 + 303 +

123 + 153 + 93.  Therefore, (9, 12, 15, 24, 30, 36) is a 3rd degree 6-tuple.  Also, 
63

43+53  = 1 +  (
3

6
)

3

+  (
3

6
)

6

+

 (
3

6
)

9

[1 + (
3

6
)

3

+  ⋯ ]  = 1 +  (
3

6
)

3

+  (
3

6
)

6

+ (
3

6
)

9

∙
63

43+53  = 1 + (
3

6
)

3

+ (
3

6
)

6

+  
39

66(43+53)
 .  Multiplying each side of 

the equation 
63

43+53 = 1 +  (
3

6
)

3

+  (
3

6
)

6

+ 
39

66(43+53)
 by 66(43 + 53) yields 69 = 66(43 + 53) + 3363(43 + 53) +

 36(43 + 53)  + 39, from which we get 69 = 6643 + 6653 +  334363 + 335363 + 3643 + 3653 +  39, or equivalently, 

2163 = 1443 + 1803 + 723 + 903 + 363 + 453 + 273.  This means that (27, 36, 45, 72, 90, 144, 180, 216) is a 

3rd degree 8-tuple.  Observe that the 3rd degree 4-tuple (3, 4, 5, 6) is primitive, but the 3rd degree 6-tuple 

(9, 12, 15, 24, 30, 36) and the 3rd degree 8-tuple (27, 36, 45, 72, 90, 144, 180, 216) are not primitive because gcf(3, 6) >

1.  Also, the integers in (9, 12, 15, 24, 30, 36) are all different, and the integers in (27, 36, 45, 72, 90, 144, 180, 216) are 

all different, because the integers in (3, 4, 5, 6) are all different. 
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3.    SOME NOTEWORTHY CONSEQUENCES OF FERMAT’S LAST THEOREM 

Corollary 1:  Let 𝑛 be a positive integer.  Then, there exists an 𝑛th degree 𝑘-tuple (𝑎1, 𝑎2, . . . ,  𝑎𝑘−1, 𝑐) for each 𝑘 = 3, 4,

.  .  .  if and only if 𝑛 equals 1 or 2. 

 

Proof:  Fermat’s Last Theorem tells us that 𝑛th degree 3-tuples exist if and only if 𝑛 = 1 or 2.  By Proposition 1, we know 

that, given an 𝑛th degree 3-tuple, we can construct an 𝑛th degree (3 + 𝑖(3 − 2))-tuple for each 𝑖 = 1, 2,.  .  . . 

 

Example 2:  Let 𝑎, 𝑏, 𝑐, and 𝑛 be positive integers that satisfy the equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛.  Then, by Fermat’s Last Theorem, 

(𝑎, 𝑏, 𝑐) is an 𝑛th degree 3-tuple, where 𝑛 = 1 or 2.  Now, select either one of the integers 𝑎 or 𝑏 (say, 𝑎) and form the 

convergent infinite geometric series whose first term is 1 and whose common ratio is (
𝑎

𝑐
)

𝑛

.  Then, 1 + (
𝑎

𝑐
)

𝑛

+  (
𝑎

𝑐
)

2𝑛

+

 (
𝑎

𝑐
)

3𝑛

+ ⋯  =   
1

1 − (
𝑎

𝑐
)

𝑛  =  
1

𝑐𝑛

𝑐𝑛 − 
𝑎𝑛

𝑐𝑛

 =  
1

𝑏𝑛

𝑐𝑛

= (
𝑐

𝑏
)

𝑛

.  Since (
𝑐

𝑏
)

𝑛

=  1 +  (
𝑎

𝑐
)

𝑛

+ (
𝑎

𝑐
)

2𝑛

[1 + (
𝑎

𝑐
)

𝑛

+ (
𝑎

𝑐
)

2𝑛

+ ⋯ ] , we 

have (
𝑐

𝑏
)

𝑛

=  1 + (
𝑎

𝑐
)

𝑛

+  (
𝑎2

𝑐2)
𝑛

∙  (
𝑐

𝑏
)

𝑛

=  1 + (
𝑎

𝑐
)

𝑛

+  (
𝑎2

𝑏𝑐
)

𝑛

.  Multiplying each side of the equation (
𝑐

𝑏
)

𝑛

=  1 +

 (
𝑎

𝑐
)

𝑛

+ (
𝑎2

𝑏𝑐
)

𝑛

 by (𝑏𝑐)𝑛, we find that (𝑐2)𝑛  =  (𝑏𝑐)𝑛  +  (𝑎𝑏)𝑛  +  (𝑎2)𝑛.  Thus, (𝑎2, 𝑎𝑏, 𝑏𝑐, 𝑐2) is an 𝑛th degree 4-tuple.  

Also, since (
𝑐

𝑏
)

𝑛

=  1 + (
𝑎

𝑐
)

𝑛

+  (
𝑎

𝑐
)

2𝑛

+   (
𝑎

𝑐
)

3𝑛

[1 + (
𝑎

𝑐
)

𝑛

+  ⋯ ] , we have (
𝑐

𝑏
)

𝑛

=  1 +  (
𝑎

𝑐
)

𝑛

+  (
𝑎2

𝑐2)
𝑛

+  (
𝑎3

𝑐3)
𝑛

∙

 (
𝑐

𝑏
)

𝑛

 =  1 +  (
𝑎

𝑐
)

𝑛

+ (
𝑎2

𝑐2)
𝑛

+  (
𝑎3

𝑏𝑐2)
𝑛

.  Multiplying each side of the equation (
𝑐

𝑏
)

𝑛

=  1 +  (
𝑎

𝑐
)

𝑛

+ (
𝑎2

𝑐2)
𝑛

+  (
𝑎3

𝑏𝑐2)
𝑛

 by 

(𝑏𝑐2)𝑛, we obtain (𝑐3)𝑛  =  (𝑏𝑐2)𝑛  +  (𝑎𝑏𝑐)𝑛  +  (𝑎2𝑏)𝑛  +  (𝑎3)𝑛 .  This means that (𝑎3, 𝑎2𝑏, 𝑎𝑏𝑐, 𝑏𝑐2, 𝑐3) is an 

𝑛th degree 5-tuple. 

Now, if we substitute the values 𝑎 = 3, 𝑏 = 4, and 𝑐 = 5 into (𝑎, 𝑏, 𝑐), (𝑎2, 𝑎𝑏, 𝑏𝑐, 𝑐2), and (𝑎3, 𝑎2𝑏, 𝑎𝑏𝑐, 𝑏𝑐2, 𝑐3), 

respectively, we obtain the following 2nd degree 𝑘-tuples for 𝑘 = 3, 4, and 5: (3, 4, 5), (9, 12, 20, 25), and 

(27, 36, 60, 100, 125).  Note that since (3, 4, 5) is primitive and gcf(3, 5) = 1, (9, 12, 20, 25) and  (27, 36, 60, 100, 125) 

are both primitive.  Also, the integers in (9, 12, 20, 25) are all different, and the integers in (27, 36, 60, 100, 125) are all 

different, because the integers in (3, 4, 5) are all different. 

  

Consider the following two observations about certain infinite geometric series. 

 

Proposition 2:  Let 𝑎, 𝑐, and 𝑛 be positive integers with 𝑎 < 𝑐.  Then, the sum, 𝑆, of the convergent infinite geometric series 

1 +  (
𝑎

𝑐
)

𝑛

+ (
𝑎

𝑐
)

2𝑛

+ (
𝑎

𝑐
)

3𝑛

+  ⋯, each of whose terms can be expressed as the 𝑛th power of a rational number, is equal 

the 𝑛th power of a rational number, (
𝑐

𝑏
)

𝑛

, if and only if there exists a positive integer 𝑏 such that 𝑎𝑛 +  𝑏𝑛  =  𝑐𝑛. 

Proof:  Since 𝑎 and 𝑐 are positive integers and 𝑎 < 𝑐, the sum, 𝑆, of this infinite geometric series is 
1

1− (
𝑎

𝑐
)

𝑛  =  
1

𝑐𝑛

𝑐𝑛 − 
𝑎𝑛

𝑐𝑛

 =

 
𝑐𝑛

𝑐𝑛 − 𝑎𝑛 , which equals the 𝑛th power of a rational number if and only if 𝑐𝑛 − 𝑎𝑛 = 𝑏𝑛 for some positive integer 𝑏.  By 

Fermat’s Last Theorem, such a positive integer 𝑏 exists if and only if 𝑛 = 1 or 2. 

Corollary 2:  Suppose 𝑎, 𝑏, 𝑐, and 𝑛 are positive integers that satisfy the equation 𝑎𝑛 +  𝑏𝑛  =  𝑐𝑛.  Let 𝑆 be the sum of the 

series 1 + (
𝑎

𝑐
)

𝑛

+  (
𝑎

𝑐
)

2𝑛

+  (
𝑎

𝑐
)

3𝑛

+ ⋯ , and let 𝑆′ be the sum of the series 1 + (
𝑏

𝑐
)

𝑛

+ (
𝑏

𝑐
)

2𝑛

+ (
𝑏

𝑐
)

3𝑛

+ ⋯ .  Then, 

𝑆 + 𝑆′ =  𝑆 ∙ 𝑆′ =  (
𝑐2

𝑎𝑏
)

𝑛

 if and only if 𝑛 equals 1 or 2. 

 

Proof:  Since 𝑆 = (
𝑐

𝑏
)

𝑛

 and 𝑆′ = (
𝑐

𝑎
)

𝑛

, we have 𝑆 + 𝑆′ =  
𝑐𝑛

𝑏𝑛 +  
𝑐𝑛

𝑎𝑛 =  
𝑐𝑛(𝑎𝑛 + 𝑏𝑛)

𝑎𝑛𝑏𝑛 =  
𝑐2𝑛

𝑎𝑛𝑏𝑛 and 𝑆 ∙ 𝑆′ =  
𝑐𝑛

𝑏𝑛  ∙  
𝑐𝑛

𝑎𝑛 =  
𝑐2𝑛

𝑎𝑛𝑏𝑛 .  

Therefore, 𝑆 + 𝑆′ =  𝑆 ∙ 𝑆′ =  (
𝑐2

𝑎𝑏
)

𝑛

.  By Fermat’s Last Theorem, this occurs if and only if 𝑛 equals 1 or 2. 
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4.   EXTENDING THE CONSTRUCTION TO SUMS AND DIFFERENCES 

We conclude this article by demonstrating how to construct equations that express the 𝑛th power of a positive integer as an 

alternating sum of 𝑛th powers of positive integers for 𝑛 equals 1 or 2.  This construction can be extended, by a technique 

similar to that displayed in the proof of Proposition 1, to express the 𝑛th power of a positive integer in terms of more general 

sums and differences of 𝑛th powers of positive integers for any positive integer 𝑛. 

 

Example 3:  Let 𝑎, 𝑏, 𝑐, and 𝑛 be positive integers, with 𝑎 < 𝑏, that satisfy the equation 𝑎𝑛 +  𝑏𝑛 = 𝑐𝑛.  Then, by Fermat’s 

Last Theorem, (𝑎, 𝑏, 𝑐) is an 𝑛th degree 3-tuple with 𝑛 = 1 or 2.  Now, form the convergent infinite geometric series whose 

first term is 1 and whose common ratio is − (
𝑎

𝑏
)

𝑛

.  Then, 1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎

𝑏
)

2𝑛

− (
𝑎

𝑏
)

3𝑛

+  ⋯  =  
1

1+ (
𝑎

𝑏
)

𝑛  =  
1

𝑏𝑛

𝑏𝑛+ 
𝑎𝑛

𝑏𝑛

 =  
1

𝑐𝑛

𝑏𝑛

=

(
𝑏

𝑐
)

𝑛

.  Since (
𝑏

𝑐
)

𝑛

=  1 −  (
𝑎

𝑏
)

𝑛

+  (
𝑎

𝑏
)

2𝑛

[1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎

𝑏
)

2𝑛

−  ⋯ ] , we have (
𝑏

𝑐
)

𝑛

=  1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎2

𝑏2)
𝑛

∙  (
𝑏

𝑐
)

𝑛

=  1 −

 (
𝑎

𝑏
)

𝑛

+ (
𝑎2

𝑏𝑐
)

𝑛

.  Multiplying each side of the equation (
𝑏

𝑐
)

𝑛

=  1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎2

𝑏𝑐
)

𝑛

 by (𝑏𝑐)𝑛, we see that (𝑏2)𝑛 = (𝑏𝑐)𝑛 −

 (𝑎𝑐)𝑛  +  (𝑎2)𝑛.  Also, since (
𝑏

𝑐
)

𝑛

=  1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎

𝑏
)

2𝑛

−   (
𝑎

𝑏
)

3𝑛

[1 − (
𝑎

𝑏
)

𝑛

+  ⋯ ] , we have (
𝑏

𝑐
)

𝑛

=  1 −  (
𝑎

𝑏
)

𝑛

+

 (
𝑎2

𝑏2)
𝑛

− (
𝑎3

𝑏3)
𝑛

∙  (
𝑏

𝑐
)

𝑛

 =  1 − (
𝑎

𝑏
)

𝑛

+  (
𝑎2

𝑏2)
𝑛

− (
𝑎3

𝑏2𝑐
)

𝑛

.  Multiplying each side of the equation (
𝑏

𝑐
)

𝑛

=  1 − (
𝑎

𝑏
)

𝑛

+

 (
𝑎2

𝑏2)
𝑛

− (
𝑎3

𝑏2𝑐
)

𝑛

 by (𝑏2𝑐)𝑛 yields (𝑏3)𝑛 = (𝑏2𝑐)𝑛 − (𝑎𝑏𝑐)𝑛 +  (𝑎2𝑐)𝑛 − (𝑎3)𝑛. 

 

Substituting the values 𝑎 = 3, 𝑏 = 4, 𝑐 = 5, and 𝑛 = 2 into (𝑏2)𝑛 = (𝑏𝑐)𝑛 − (𝑎𝑐)𝑛  +  (𝑎2)𝑛 and (𝑏3)𝑛 = (𝑏2𝑐)𝑛 −
 (𝑎𝑏𝑐)𝑛 + (𝑎2𝑐)𝑛 − (𝑎3)𝑛, respectively, yields the following two equations: (42)2 = (4 ∙ 5)2 −  (3 ∙ 5)2  +  (32)2 and 

(43)2 = (42 ∙ 5)2 −  (3 ∙ 4 ∙ 5)2 +  (32 ∙ 5)2 −  (33)2.  That is, 162 = 202 − 152  +  92 and 642 = 802 − 602 +  452 −
 272. 
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